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Neutrino oscillations

3 ν flavors: νe, νµ and ντ

ν oscillation observed in various experiments since it’s discovery
I Implies that ν are massive particles→ must also have 3 mass states: ν1, ν2, ν3

Projection between flavor↔ mass states via mixing matrix U:

U =

 1 0 0
0 c23 s23

0 −s23 c23

×

 c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13

×

 c12 s12 0
−s12 c12 0

0 0 1


sij = sin θij , cij = cos θij

I U is unitary if only 3-flavor mixing

6 parameters (∆m2
21, ∆m2

32, θ12, θ13, θ23 and δCP) describe ν oscillations
I possibility of a Majorana term, but does not effect oscillations

Currently only δCP and mass ordering (sign of ∆m2
32) not measured
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Neutrino oscillation – a schematic view
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Neutrino oscillations in vacuum
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θ12 = 34◦, θ13 = 8.8◦, θ23 = 45◦, ∆m2
21 = 7.59 · 10−5 eV2/c4, ∆m2

32 = 2.43 · 10−3 eV2/c4, δCP = 0◦.
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Producing neutrinos

Nuclear reactors

Stars

Accelerators

Cosmic Rays showers
I “atmospheric neutrinos”

. . .
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Atmospheric neutrinos

Cosmic ray (CR) interact with
atmosphere, producing hadronic shower

I Decays produce ν

νe:νµ:ντ produced at ≈1:2:0

similar rate of ν and ν̄
I however, cross-sections for ν̄ smaller

than for ν
⇒ at detection less ν̄ than ν
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Atmospheric neutrinos

arXiv:1510.08127

ν energy over several orders of
magnitude
CR bombard Earth from all directions
⇒ neutrinos from all directions!
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Matter Effects on Neutrino OscillationsWhy does this happen?

14

CC interactions of 
νe with matter

+ for neutrinos
- for antineutrinos

This modifies the neutrino mixing, producing effective mixing angles in matter:

This has a resonance condition for neutrinos in the normal hierarchy or 
antineutrinos in the inverted hierarchy

- for neutrinos
+ for antineutrinos

Matter potential modifies neutrino mixing→ effective mixing angles in matter:

∆m2
M =

√√√√(∆m2 cos 2θ − 2E Vint

)2

+
(
sin 2θ∆m2

)2
, tan 2θm =

tan 2θ

1−
2E Vint

∆m2 cos 2θ

Vint = ±
√

2GF Ne; + for ν, and − for ν̄

∆m2 : + for NO, and − for IO
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Matter Effects on Neutrino Oscillations

Preliminary Reference Earth Model (PREM)

Phys.Earth.Plan.Int. 25, 297 (1981)
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Matter Effects on Neutrino Oscillations

Preliminary Reference Earth Model (PREM)

Phys.Earth.Plan.Int. 25, 297 (1981)
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Atmospheric neutrinos oscillations across the Earth
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Atmospheric neutrinos oscillations across the Earth
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IceCube
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IceCube

50 m

1450 m

2450 m 

2820 m

IceCube Array
 86 strings including

5160 optical sensors

DeepCore 
8 strings-spacing optimized

480 optical sensors

Eiffel Tower
324 m 

IceCube Lab
IceTop
81 Stations
324 optical sensors

Bedrock

for lower energies

8 DeepCore strings 

Instrument 1 Gton of ice
Optimized for TeV-PeV neutrinos

I Astrophysical ν discovered!
DeepCore

I ∼10 Mton region with
denser instrumentation

I Pushes thresholds down to ≈ 5
GeV
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IceCube-DeepCore

IceCube DOM

10” PMT@
@I
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Detecting neutrinos in IceCube

Neutrinos interact in the ice

shower
hadronic

n

νl l−, νl

Charged particles moving faster than
the speed of light in ice produce
Cherenkov light cone

3D array of PMTs detect produced light

Joshua Hignight FNAL Neutrino Seminar June 16th , 2017 15 / 33



Event topology in IceCube
Look for 2 distinct event topologies

Track-like events: typically νµ CC events
color→ hit time
size→ hit charge

Cascade-like events

Topologies much harder to distinguish at energies needed for oscillation analysis. . .

30 GeV νµ CC→ ← 31 GeV νe CC
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Measurement strategy for neutrino oscillations

Main background is atmospheric µ
I Use IceCube as veto to reject atm µ events

Reconstruct ν energy and direction
I oscillation distance (L) given by zenith

Measure oscillation by fitting L× E × PID

Joshua Hignight FNAL Neutrino Seminar June 16th , 2017 17 / 33



Comparison to last published νµ disappearance results

IC2014 analysis

Results in PRD 91, 072004 (2015)
Focus on νµ CC “golden events”

I Clear µ tracks
I Several non-scattered photons

Use only up-going events

Similarities in both analyses

Atmospheric µ background shape
estimated from data
ν reconstruction resolution similar
Both are 3 year data sets

This analysis

Order of magnitude increase in statistics
Reconstruction fits full event topology
with L-based method

I Can fit events with scattered photons
I Can reconstruct all ν types

PID variable separates sample in two:
I Track: νµ CC enriched sample
I Cascade: mix of all ν flavors

Full sky analysis
I Better control of systematics

Fitting includes term accounting for
statistical uncertainty from prediction
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“Golden Events”
Clear µ tracks

I Reduce contamination of cascades
(primarily ν NC and νe CC)

Require several non-scattered γ
select events “easy” to reconstruct

I 10◦ resolution in neutrino zenith
I 25% resolution in neutrino energy

Joshua Hignight FNAL Neutrino Seminar June 16th , 2017 19 / 33



Reconstructing low-energy events: L-based techniques
Goal: reconstruct νµ CC (DIS) interactions

νµ µ

Hadronic cascade
assume same direction for µ and cascade

π

Maximize likelihood (L) of hypothesis to correspond to the data
I L calculation based on tables with expected charge-time from EM cascade and µ track

F Fairly complex tables to account for natural medium properties
F EM cascade energy converted to hadronic cascade energy a posteriori

Same event hypothesis in reconstruction also works for cascade events
I In that case µ track length→ 0
I Currently cannot distinguish EM and hadronic cascades

Distinguish between track/cascade based on presence or absence of µ
I Compare L between fit with and without track
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Low-energy reconstructions: a minimization problem

8D L space is very rough

Regular minimizers don’t work
⇒ use MultiNest algorithm

by F. Feroz et al. (arXiv:0809.3437)
I designed to explore the highly dimensional
L space with multiple minima
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Low-energy reconstructions: resolutions

DeepCore→ From previous published analysis
DeepCore+→ From this (L-based) analysis, events classified as track-like
Resolutions are similar, but

I DeepCore+ has significantly larger statistics!
I DeepCore+ can reconstruct cascade-like events also
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Fitting Function used in new νµ disappearance analysis
30 years of MC for ν components and several systematic variants
Data-driven estimate of atmospheric µ background shape

I Similar method used in PRD sample

Need to account for uncertainty in prediction, especially for background muons
Our solution is to fit a χ2 function instead of a L function.

χ2 =
∑

i∈{bins}

(nν+µ
i − ndata

i )2

(σuncor
ν+µ,i )

2 + (σdata
i )2

+
∑

j∈{syst}

(sj − ŝj )
2

σ̂2
sj

I nνµ
i , ndata

i : number of events in bin i for prediction (ν MC + µ sideband) and data
I σdata: statistical uncertainty in the data for bin i
I σuncor

ν+µ : statistical uncertainty in prediction with additional shape uncertainty in µ sideband
I ŝj , σ̂sj : central value and sigma of a Gaussian prior of systematic sj

Have a total of 128 bins: 8 cos(θ)× 8 Energy × 2 PID
All bins have a large enough number of events that a Gaussian distribution approximates well
a Poisson distribution.

Joshua Hignight FNAL Neutrino Seminar June 16th , 2017 23 / 33



Systematics

Overall, the systematics can be split up into three broad categories:

1 Flux and cross-section
F Neutrino normalization
F Spectral index (γ)
F νe + ν̄e normalization
F NC normalization
F ∆(ν/ν̄) as both energy and zenith dependence
F MRES

A

2 Detector related parameters
F Overall DOM efficiency
F Relative DOM efficiency in both lateral and head-on directions

3 Atmospheric background
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Systematics: Flux and Cross-section

Flux and cross-section systematics reweight our default models.
I We use Honda’s 2015 flux model for our default MC production (arXiv:1502.03916)
I GENIE is used for our default cross-section models.

∆γ → energy-dependent shift in event rate:
I This can arise from uncertainty on γ (nominally γ = −2.66) or from uncertainties in the

DIS cross section.
F Studies on DIS cross-section included uncertainties on the Bodek-Yang model used in

GENIE, uncertainties in the differential cross-section of DIS neutrino scattering, and studies
of hadronization uncertainties for high-W DIS events.

F It was found these were highly degenerate with the spectral-index and overall normalization
or negligible so were not included in the fit.

The value of MRES
A was found to have a small impact on the results so is included in

the fit.
I MCCQE

A was also investigated but found to be negligible

Joshua Hignight FNAL Neutrino Seminar June 16th , 2017 25 / 33



Systematics: Flux and Cross-section
The normalizations of νe + ν̄e events and of NC events,
defined relative to νµ + ν̄µ CC events.

The ν/ν̄ ratio have a directional/energy dependence, so a
more sophisticated approach was used.

I From the K/π ratio of the atmospheric shower

Parameterizations uses predictions from Barr et al.
(arXiv:0611266v1)
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Systematics: Detector
By far, the largest uncertainty in our measurement comes from the detector
systematics.
We have one that has to do with our overall DOM efficiency.

I This just scales up and down the amount of light seen in each PMT
There are also two systematics related to how the local ice properties effects our
DOM acceptance.
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Systematics: Detector

These effects are estimated by Monte Carlo at discrete values
A continuous distribution is determined by linear interpolation between the discrete
simulated values for each bin in the (energy, direction, track/cascade) analysis
histogram

Joshua Hignight FNAL Neutrino Seminar June 16th , 2017 28 / 33



Systematics used in analysis and best fit

Parameters Priors Best Fit
NO IO

Flux and cross section parameters
Neutrino event rate [% of nominal] no prior 85 85
∆γ (spectral index) 0.00±0.10 -0.02 -0.02
νe + ν̄e relative normalization [%] 100±20 125 125
NC relative normalization [%] 100±20 106 106
∆(ν/ν̄) [σ], energy dependent‡ 0.00±1.00 -0.56 -0.59
∆(ν/ν̄) [σ], zenith dependent‡ 0.00±1.00 -0.55 -0.57
MA (resonance) [GeV] 1.12±0.22 0.92 0.93

Detector parameters
overall DOM efficiency [%] 100±10 102 102
relative DOM efficiency, lateral [σ] 0.0±1.0 0.2 0.2
relative DOM efficiency, head-on [a.u.] no prior -0.72 -0.66

Background
Atm. µ contamination [% of sample] no prior 5.5 5.6
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Sample of events used for this analysis
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νµ disappearance oscillation analysis
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Fitting to data done in 3D space (E , cos θ,PID)→ projected onto L/E for illustration

I χ2/ndf = 117.4/119
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νµ disappearance oscillation analysis

Result consistent with other
experiments.
Using data from 3 years of
detector operations.
This measurement is still
statistics limited!

I Will need at least 6 years of
data to become statistically
limited.

∆m2
32 = 2.31+0.11

−0.13 × 10−3 eV2

sin2 θ23 = 0.51+0.07
−0.09
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Summary

IceCube-DeepCore detector: good instrument to measure neutrino oscillations

Many updates to the νµ disappearance analysis since 2014:
I New reconstruction being used
I All types of ν’s and whole sky

Latest θ23 and ∆m2
32 measurement of similar precision to those from accelerators

I Preference to maximal mixing like T2K

Many more topics using this same event selection are currently underway
I ντ appearance
I Sterile ν searches
I NSI
I WIMP searches
I . . .
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Backup slides
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Neutrino Mass Ordering
Normal Ordering (NO) Inverted Ordering (IO)

|∆m2
32|

6

?

|∆m2
32|

6

?

Neutrino mass ordering: sign of ∆m2
32

No effects visible in vacuum oscillations
Matter effects induce different changes for NO and IO
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Measuring Neutrinos: Neutrino interaction with matter
Charged Current (CC) interaction :

W

νl l−

W

νl l+

Neutral Current (NC) interaction :

Z

ν ν

Z

ν ν

Measure of produced lepton (l)→ define ν flavor
Measure recoil of nucleus or hadronization in some detectors
Further classification of interaction depends on what happens in nucleus

nuclear recoil [QE]←−−−−−−−→ [DIS] large hadronization
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Atmospheric neutrinos oscillations
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Largest baseline (L=12760 km, cos θz = −1) has:
I First oscillation maxima at ∼ 25 GeV
I Matter effects below ∼ 12 GeV
I Potential for νe appearance at 8 GeV

Joshua Hignight FNAL Neutrino Seminar June 16th , 2017 37 / 33



Atmospheric neutrinos oscillations
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Largest baseline (L=12760 km, cos θz = −1) has:
I First oscillation maxima at ∼ 25 GeV
I δCP below ∼ 12 GeV

F but matter effects dominate that region
I Potential for νe appearance at 8 GeV
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Neutrinos Anti-Neutrinos
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Low-energy reconstructions: resolutions
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Comparison to IO (NO FC!)
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Containment Cut
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Background Cut
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